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CALCULATION TECHNIQUE FOR AEROELASTIC OSCILLATIONS

OF MULTIBEAM CONSTRUCTIONS

UDC 533.6.013.42S. D. Salenko

Mathematical models and techniques that describe transverse oscillations of constructions in a wind
flow are considered. A technique is proposed, which allows one to determine the amplitudes of oscil-
lations of multibeam constructions under wind resonance. Oscillations of a system with distributed
parameters are described by a weakly nonlinear differential equation. The amplitudes of the limiting
cycles of oscillations are determined using the energy approach. To describe the fluctuating com-
ponent of aerodynamic forces, an empirical coefficient is introduced, which characterizes the energy
contribution of these forces per one period of oscillations. In their structure, the calculation formulas
are similar to those in European standards for calculating the response of constructions under the
action of wind, but the formulas proposed are more universal and describe the physics of the process
more adequately.

The following main types of aeroelastic oscillations are currently distinguished: flutter, wind resonance,
galloping, and buffeting [1–3]. The mathematical models and techniques for the description of transverse oscillations
of constructions in a wind flow were mostly derived for single-beam constructions.

In modern bridge-building, the method of longitudinal sliding is used to place span constructions in a design
position. To lighten the cantilever, overlapping plates are taken off at the front part of the construction; as a
result, it is a construction consisting of several box girders located at a distance of 3–6 heights and connected by
transverse links in the form of trusses (Fig. 1). It is known from experience of constructing this kind of bridges [4]
and wind-tunnel experiments with span-construction models [5] that a section of a span construction without
orthotropic plates generates significant oscillating aerodynamic loads. The calculations of the shape and frequency
of oscillations of a system of beams connected by lintels showed that crossflow flexural oscillations in the vertical
plane are of practical interest for this class of constructions. Other shapes of oscillations may appear only under
the action of unrealistically high velocities of the wind.

It follows from the results of wind-tunnel experiments with models of two- and three-beam span constructions
that there are two or three resonant velocities of the wind at which intense crossflow oscillations of the construction
are observed in the case of multibeam constructions, in contrast to single beams [5]. The existence of several
critical Strouhal numbers is caused by the possibility of existence of different types of the flow around multibeam
constructions; oscillations in different regimes are significantly different in terms of the character of excitation
(rigid or soft), width of the range they cover, and amplitude. Within the framework of the currently existing
classification, these oscillations are most close to wind resonance, though at least one of the resonance modes is
related to aerodynamic interference of the beams.

Several basic approaches may be classified, which are used to describe transverse oscillations of constructions
exposed to a flow. In the simplest formulation, the system is considered as a linear oscillator, and the aerodynamic
force is assumed to vary in accordance with a harmonic law [1, 6]. The aerodynamic force is often represented as a
sum of two components, which coincide in phase with displacement and velocity of the body [2, 7]; sometimes these
two approaches are united [8]. Not only determinate but also statistical approaches are used to describe transverse
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Fig. 1. Three-beam cantilever of the span construction.

Fig. 2. Calculation scheme of the span-construction cantilever.

oscillations [9]. A technique based on similarity of the behavior of the oscillating system considered and the Van-
der-Pol oscillator is widely used [10, 11]. These techniques for single beams allow reproduction of the amplitude
of oscillations, the width of the resonance region, and the hysteresis phenomena. Nevertheless, on the one hand,
these techniques utilize a complex mathematical apparatus and are inconvenient for engineering calculations, and
on the other hand, being semiempirical, they do not allow one to predict the behavior of new constructions, since
they require a large number of experimental data.

The objective of the present work is to develop a technique that allows one to determine the resonant velocities
and amplitudes of the limiting cycles of aeroelastic oscillations of multibeam constructions with a minimum amount
of input experimental data.

The constructions considered are multisupport beams of mass and rigidity varied over the length (Fig. 2). To
describe flexural oscillations in the vertical plane, we use the following assumptions: friction in supports is ignored
and they are assumed to be absolutely rigid; the beam is assumed to be long, i.e., the relation l/h � 1 is valid
[l is the beam length and h is its characteristic size (cross-sectional height)]; the cutting forces are neglected, since
l/h� 1.

The differential equation of transverse oscillations of the beam under wind resonance is obtained by intro-
ducing terms that characterize aerodynamic forces and internal scattering of energy in the process of oscillations
into the equation for free oscillations:
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Here w(z, t) is the function of flexural deformation, m(z) is the running mass, EI(z) is the flexural rigidity, and Fa
is the fluctuating component of the running aerodynamic load.

In the general case, Fa depends on the local amplitude of oscillations, Reynolds and Strouhal numbers,
interference of the neighboring sections, and tip effects. We assume that, for steady oscillations, Fa is a periodic
functions with a period equal to the period of oscillations of the beam.
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To describe the internal scattering of energy in the process of oscillations, we introduce the func-
tional Φ(∂2w/∂z2), which characterizes the imperfect elasticity of the oscillating system and which is the moment
of forces of inelastic resistance [12].

It follows from the test results for span-construction models that the logarithmic decrement of oscillations
without the flow is 0.01–0.02, and the increment of oscillations developing in the flow is of the same order. Therefore,
we may assume that the terms Fa and ∂2[Φ(∂2w/∂z2)]/∂z2 in Eq. (1) have a higher order of smallness than the
terms in the left-hand side; therefore, Eq. (1) may be considered as weakly nonlinear.

Taking into account the smallness of the right-hand side of Eq. (1), we may assume that beam oscillations
in a steady regime obey a harmonic law with a frequency almost equal to the frequency of eigenoscillations. Then,
we may assume that w(z, t) ≈ aϕ(z) sinωt, where a is the amplitude of steady oscillations, ϕ(z) is the own shape
of oscillations, and ω is the eigenfrequency of oscillations.

To determine the amplitudes of the limiting cycles of self-induced oscillations, we use the principle of energy
balance, according to which energy scattering in an oscillating system in a cycle ∆W equals the work of external
forces ∆A: ∆W = ∆A.

Integrating the expression for the elementary work of external aerodynamic forces at an elementary section
with respect to the period and length of the beam, we obtain

∆A =

Lq∫
0

2π∫
0

Faωaϕ(z) cosωt dt dz. (2)

Since Fa is a periodic function in the case of steady oscillations, it can be expanded into the Fourier series

Fa =
∞∑
n=1

qn sin (nωt+ψn), where qn = qn(t, a, . . .) are the amplitudes of oscillations of the distributed aerodynamic

load at the nth frequency and ψn is the phase difference between the nth harmonic and beam displacement. We
consider oscillations of the first tone, though similar reasoning may be applied to an arbitrary tone. Taking into
account that the resulting work of harmonics with n > 1 over the period equals zero, Eq. (2) yields

∆A = aπ

∫
Lq

q1ϕ(z) sinψ1 dz = aπ

∫
Lq

c′y1

ρV 2

2
bϕ(z) sinψ1 dz, (3)

where c′y1 is the amplitude of the fluctuating component of the lift coefficient, b is the overall width of the beams
in the streamwise direction, and ρ and V are the free-stream density and velocity, respectively.

Assuming that ψ1 ≈ 90◦ in Eq. (3) (which is the case for the usual resonance), we obtain the same result
as for a harmonic external force independent of the character of oscillations. However, in the case of aeroelastic
oscillations considered, the external aerodynamic force is related to the character of oscillations. Experiments with
prisms of rectangular cross sections show [13] that the phase difference ψ1 varies within a wide range; it is difficult to
determine experimentally the value of ψ1 and to systematize and approximate it because of its complex dependence
on the cross-sectional shape of the prisms, the amplitude of oscillations, and the Strouhal number Sh.

It seems reasonable not to separate the quantities c′y1 and sinψ1 but to introduce the coefficient ca =
c′y1 sinψ1, which is a functional characterizing the work of aerodynamic forces during one period for the tone
considered. In the general case, the coefficient ca may be either positive (excitation of oscillations) or negative
(damping of oscillations). The coefficient ca is determined experimentally. The dependence of the coefficient ca on
the relative amplitude of oscillations for three resonant regions (three values of Sh number) for a three-beam section
model is plotted in Fig. 3. For a section model, the amplitude of oscillations over the length is constant along the
streamwise coordinate. For actual constructions, the local amplitude depends on the longitudinal coordinate z.
Because of the interference of the neighboring sections with different amplitudes of oscillations, the problem of
determination of the local value of the coefficient ca arises. By analogy with the hypothesis of planar sections for a
wing, we assume that the local value of the coefficient ca depends only on the local relative amplitude of oscillations:
ca = ca(aϕ(z)/h). Since the experimental dependences ca = ca(a/h) are approximated at the section a/h > 0, and
the amplitude may have an arbitrary sign in calculations, the absolute value of ϕ(z) should be used in (3).

In addition, we introduce the coefficient R(z, a/h) into (3), which takes into account the correlation of
oscillations of the aerodynamic force along the construction. We approximate the coefficient R(z, a/h) by the
formula obtained on the basis of experimental data of [8, 13]: R(z, a) = 1 + exp (−15ā2)[exp (−(z̄/5)2)−1], where ā
and z̄ are the amplitude of oscillations and the streamwise coordinate normalized to the beam height h.
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Fig. 3. Coefficient ca as a function of the relative amplitude for Sh =
0.127 (1), 0.087 (2), and 0.084 (3).

Taking into account the above reasoning, we obtain the following expression from Eq. (3):

∆A(amax) = amaxπ
ρV 2

2
b

∫
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caR(z, a)|ϕ(z)| dz (4)

(amax is the maximum amplitude of oscillations).
The magnitude of internal scattering of energy in one period ∆W is determined by the known technique [12]:
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Here δ is the logarithmic decrement of oscillations, mi are the masses of localized loads, and ϕi is the amplitude
value of flexure at the place of the ith localized load.

Since we assumed that ∆A = ∆W , then equating (4) and (5), we obtain the expression for determining the
maximum amplitude of steady oscillations
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. (6)

Formula (6) is similar to that in [14] and European standards for calculating constructions [15]:

y0

d
= K̄K

clift

Sc Sh2 , (7)

where clift is the coefficient of the exciting force, K̄ is the coefficient characterizing the shape of oscillations, K is
the correction coefficient:
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∑
j

∫
Lj
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/(

4π
∑
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)
, K =
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|ϕ(z)| dz
/∑

j

∫
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|ϕ(z)| dz;

y0 is the maximum displacement of the construction (amplitude of oscillations), d is the characteristic size, Sc is
the Scruton number, and Sh is the Strouhal number.
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Fig. 4. Amplitudes of oscillations of the span-construction cantilever
for Sh = 0.127 (1), 0.087 (2), and 0.084 (3).

Indeed, we obtain the following relation from Eq. (6) in the absence of localized loads:
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Here c̃a =
∫
Lq

caR(z, a)|ϕ(z)| dz is the generalized (equivalent) coefficient ca for the beam as a whole.

Equation (8) contains the ratio b/h, which is absent in (7). Equation (7) is obtained for a cylinder with
a characteristic size d, which enters both the expression for the coefficient of the exciting force and the Strouhal
number. Nevertheless, in the case of a prismatic body, it is more convenient to use different characteristic dimen-
sions for the above two quantities. For ca, this is the total cross-sectional width b (since it determines the area
affected by pressure fluctuations that excite oscillations); for Sh, this is the cross-sectional height h (since it mainly
determines the vortex-shedding frequency). Using this approach, it is more convenient to generalize and systematize
experimental dependences for various cross-sectional shapes.

In addition, Eq. (7) contains clift, which is the amplitude of the fluctuating component of the lift coefficient.
The simplicity of this approach (where the system is considered as a linear oscillator) was discussed above.

It should be noted that the European standards for calculating constructions imply that the coefficient clift
and the Scruton number (or the logarithmic decrement of oscillations δ) are independent of the amplitude of
oscillations, which is not usually fulfilled.

Let c0 be the coefficient at the zeroth power in the expansion of ca into the Maclaurin series ca =
∑
n

ciā
n

[for small amplitudes, ca ≈ c0 + (ca)′āā]. From an analysis of the variants of the solution of Eq. (6), it follows that
the following cases are possible:

— for c0 > 0 (curve 3 in Fig. 3), steady self-induced oscillations will be observed for all δ;
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— for c0 = 0 (curve 1 in Fig. 3) and the logarithmic decrement of oscillations at zero amplitude δ0 greater
than some critical value

δ0 > δcr = (ca)′āπ
ρV 2

2
b
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R(z, a)|ϕ(z)| dz
/[
ω2
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∑
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miϕ
2
i (z)

)]
,

oscillations will not occur (or will decay for finite perturbations), which is supported by both experimental and
numerical data;

— if there is rigid excitation of oscillations (curve 2 in Fig. 3) in a given cross section of beams on the section
model, the oscillations on the cantilever beam will either reach a finite amplitude only at a certain initial impact or
decay at a high logarithmic decrement of oscillations, whose magnitude is determined in calculations by formula (6)
using the method of successive approximations.

The calculated dependences of the amplitude of oscillations on the overhang (length of the cantilever section)
Lk for an actual span construction of the bridge are plotted in Fig. 4. The maximum amplitudes of oscillations are
reached at a certain intermediate value of the overhang rather than at its maximum value (as it is often expected).
There are no full-scale measurements for such constructions, except for the visually observed oscillations with an
amplitude of 0.3–0.5 m for a 80-m overhang of a three-beam cantilever [4].

The technique proposed was experimentally verified in a wind tunnel using a model whose dynamic char-
acteristics are similar to characteristics of the span construction of the bridge. The amplitudes of oscillations
calculated using the coefficients ca obtained for the section model are in good agreement with the measured values
(the error is less than 5–10%).
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